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ABSTRACT

Purpose: Surface irregularities can result in the formation of nucleation sites for wear and 
cracks. Roughness is considered one of the important predictors when it comes to the 
performance of mechanical instruments or components. The study aimed to establish prediction 
models using response surface methodology (RSM) to optimise surface roughness (SR) when 
turning aluminium alloy 6061 with carbide insert TiCN/TiN using RSM.
Design/methodology/approach: RSM is a well-established method utilised by many 
studies in the literature to predict the machining outcomes and to choose the ideal machining 
parameters of specific machining processes and materials. It is an economical, practical, 
and relatively easy method. Moreover, it is a common method utilised in machining process 
modelling. Therefore, the study used RSM to develop prediction models and optimise the 
machining parameters to achieve the optimal surface roughness when turning aluminium alloy 
6061 with carbide insert TiCN/TiN.
Findings: Both first and second-order models were developed and were found to be adequate 
according to the analysis of variance. The most contributing factor to the surface roughness was 
cutting speed. The contour plots have been generated and show different cutting parameter 
plots and how they influence the surface roughness (SR) values. Surface roughness reached 
its highest value when the feed rate increased, cutting depth increased, and cutting speed 
decreased. High cutting speed, low feed rate, and low cutting depth should be used to obtain 
the lowest surface roughness.
Research limitations/implications: Further development of contours generated by the 
RSM models will facilitate the selection of the ideal combination of cutting speed, feed rate, 
and depth to achieve optimal surface roughness. RSM is considered an efficient and convenient 
method, requiring little experimentation and giving highly crucial inputs and information.
Practical implications: Surface roughness equations clearly explain that the cutting speed 
and cutting feed rate are major contributors to surface roughness. Low cutting speed, high 
cutting depth, and feed rate correspond to a higher surface roughness.
Originality/value: In conclusion, reliable models for the prediction of surface roughness were 
developed and used to optimise the machining efficiency of aluminium alloy 6061. RSM is 
considered an efficient and convenient method, requiring little experimentation and giving highly 
crucial inputs and information.
Keywords: Surface roughness, RSM, Cutting speed, Feed rate, Cutting depth, Optimisation
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ANALYSIS AND MODELLING

 
 
 
 
 
 
 
 
1. Introduction 

 
Surface irregularities can result in the formation of 

nucleation sites for wear and cracks [1]. Roughness is 
considered one of the important predictors when it comes to 
the performance of mechanical instruments or components 
[2]. Not only is surface finish considered one of the most 
important performance indicators that can potentially impact 
other machined parts’ mechanical properties, It can also have 
an impact on the functional characteristics of the machined 
part, which include light reflection, wear, friction, electrical 
conductivity, and heat transfer [3-5]. Therefore, a good 
surface quality is required in most machining applications 
[6]. However, controlling roughness in manufacturing can 
be expensive and difficult; i.e. reducing surface roughness 
will often increase the manufacturing costs [7]. 

Material machinability refers to the adaptability of the 
material to be produced by a machining process. Ultimately, 
an optimal combination of parameters such as good surface 
finish, high material removal rate, low tool wear rate, low 
cutting force, and accurate geometrical characteristics of the 
workplace will produce better machinability [3]. 
Subsequently, surface roughness is rendered as one of the 
most important factors that can be used in determining the 
machinability of materials and the quality of products [8]. 
Besides, machining parameters can significantly influence 
surface roughness, including cutting depth, cutting speed, 
and feed rate [9]. 

Response surface methodology (RSM) goes back to 
1951, as Box and Wilson developed it to help improve 
manufacturing processes. The method’s main aim was to 
optimise chemical reactions to obtain good product 
characteristics at much lower costs (e.g. high purity, high 
yield, and low cost), which was accomplished after using 
sequential experimentation involving different factors (e.g. 
temperature and pressure). A similar methodology can be 
utilised to predict any response affected by different factor 
levels [10]. RSM is a well-established method used by many 
studies in the literature in many applications, including 
predicting the machining outcomes and optimising the 
machining parameters of specific machining processes and 
materials [11-17]. In addition, RSM is considered an 
economical, practical, and relatively easy method that 
provides important inputs with minimal experimentation [18].  

Moreover, it is a common method utilised in modelling 
machining processes [19,20]. RSM combines experimental, 
statistical inferences, and regression analysis [21]. However, 
some studies have evaluated the influence of cutting 
parameters on surface roughness in the turning process of 
aluminium alloys. However, those studies have been 
conducted on different aluminium alloys and using different 
types of inserts. For instance, Chowdary et al. (2019) 
conducted an experimental study to optimise the surface 
roughness when aluminium alloy 6061 using titanium 
aluminium nitride (TiAlN) coated carbide inserts [22]. 
Furthermore, surface roughness RSM was developed by 
Musavi et al. (2020) for the turning process of aluminium 
alloy 2024 using an uncoated cemented insert [23]. In this 
study, an RSM model was developed to optimise the 
machining parameters of the turning process of aluminium 
alloy 6061 using titanium carbonitrate-coated carbide 
inserts. 

Given that turning is considered one of the most 
commonly utilised machining processes [24], and the 
establishment of a thorough understanding of how each of 
these variables affects the surface roughness will help the 
selection of the optimal machining parameters that will 
produce the optimal surface roughness when turning 
aluminium alloy 6061. Understanding the impact of those 
independent factors on the surface roughness can guide the 
turning process of aluminium alloy 6061 to identify the right 
machining parameters’ combination that can achieve 
optimal roughness. Therefore, in the given study, different 
cutting parameters, such as speed, feed rate, and axial depth, 
have been considered in predicting surface roughness when 
turning aluminium alloy 6061. The article aimed to establish 
RSM models for the prediction of surface roughness for the 
turning process of aluminium 6160 via the utilisation of 
response surface methodology. 

 
 

2. Methodology. 
 
2.1. Response model 

 
The RSM model contains a dependent variable (i.e. y), 

referred to as the response variable, and other independent 
variables that can influence the dependent variable, which 

1.	�Introduction

2.	�Methodology

2.1.	�Response model
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can be identified as x1, x2,..., xk, Given that those variables 
can be measured. Therefore, the expression of the response 
variable can be as the following Equation No. 1: 

 

y = f (x1, x2,. . .xk) (1) 
 

The goal of using the model is to optimise the response 
variable, i.e. y. The independent variables are assumed to be 
continuous and can be controlled experimentally with a 
negligible error, assuming that the dependent response 
variable is random. For example, in a turning operation, it is 
required to find an optimal combination of cutting speed, 
feed rate and cutting depth (x1 = ln v), (x2 = ln f), and (x3 = 
ln cp) respectively, to achieve the most optimal surface 
roughness (y = ln Ra). Were ε is assumed to be normally 
distributed and correlated random error with constant 
variance and zero mean, the observed response y (i.e. surface 
roughness) can be expressed as a function of the speed, feed 
rate, and depth as the following Equation No. 2: 

 

y = f (x1, x2, x3) + 𝜀𝜀 (2)  
 

Usually, a first- or second-order low-order polynomial  
is used in some regions of the independent variables. The 
first-order model can be expressed in the following Equation 
No. 3: 

 

y � 𝛽𝛽� � ∑ 𝛽𝛽�𝑥𝑥� �  𝜀𝜀    ����    (3) 
 

and the expression of the second-order model can be as the 
following Equation No. 4: 

 

y � 𝛽𝛽� � ∑ 𝛽𝛽i
����  𝑥𝑥� � ∑ 𝛽𝛽i

����  𝑥𝑥�� �
 ∑ ∑ 𝛽𝛽��  𝑥𝑥�  𝑥𝑥� ��  𝜀𝜀�                                     for 𝑖𝑖 �  𝑗𝑗 (4) 

 

Those functions are normally utilised in RSM problems. 
The estimation of β parameters of the polynomials is done 
using the least squares method Equation No. 5. 
 

Ra �  C �V � 𝑓𝑓�  C�  y � ἐ (5) 
 

where surface roughness is Ra and V, f and Cp are the cutting 
speed (m s-1), feed rate (mm rev-1) and cutting depth (mm), 
respectively, while C, m, n and q are constants, the 
logarithmic form of Equation (5) can be written as the 
following Equation No. 6: 
 

�� �� � �� 𝐶𝐶 �� �� � � � �� 𝑓𝑓 � � ln𝐶𝐶�� � �� ἐ (6) 
 

The linear form of Equation 2 can be expressed as the 
following Equation No. 7:  

 

𝑦𝑦 �  𝛽𝛽�𝑥𝑥� �  𝛽𝛽�𝑥𝑥� � 𝛽𝛽�𝑥𝑥� � 𝛽𝛽�𝑥𝑥� � 𝜀𝜀 (7) 
 

where y is surface roughness, x0 = 1 (dummy variable), x1 = 
ln V, x2= ln f, x3 = ln CP, and ɛ = ln ɛ, where ɛ is considered 
to be uncorrelated, the normally distributed random error 

along with constant variance and zero means, β0 = lnC while 
β1, β2, and β3 are the model’s parameters, the expression of 
the second model can be as the following Equation No. 8: 

 

𝑦𝑦� �  𝛽𝛽� 𝑥𝑥� �  𝛽𝛽� 𝑥𝑥� � 𝛽𝛽� 𝑥𝑥� � 𝛽𝛽� 𝑥𝑥� �  𝛽𝛽�� 𝑥𝑥�� �
 𝛽𝛽�� 𝑥𝑥�� � 𝛽𝛽�� 𝑥𝑥�� � 𝛽𝛽��𝑥𝑥�𝑥𝑥� � 𝛽𝛽�� 𝑥𝑥�𝑥𝑥�  (8) 
 

Using the least squares method to estimate values of β1, β2, 
and β3. Its basic formula can be expressed as the following 
Equation No. 9: 
 

�x� x� � �  x�  y  � �  �x�  x��� x � y (9) 
 

where xT is the transpose of the matrix x and (xT x)-1 is the 
inverse of the matrix (xT x). The solution details by the matrix 
approach are thoroughly explained in the literature [25]. 
 
2.2. Experimental set-up 
 

An arrangement consisting of fifteen experiments was 
implemented for first-order model development. The Box 
Behnken design (BBD) is frequently used when performing 
non-sequential experiments. Utilising such design, i.e. Box 
Behnken, allows sufficient assessment of coefficients for 
both the first and second-order models. BBD also has fewer 
design points, making it a less expensive method to 
implement than the central composite design with the same 
number of factors. Moreover, because BBD lacks axial 
points, this ensures that all design points are within the safe 
operating point. BBD also ensures that factors are not set at 
their highest values simultaneously. A 3-factor Box 
Behnken is shown in Figure 1. Preliminary tests were done 
to identify a suitable cutting speed, feed rate and cutting 
depth, as indicated in Table 1. 

 

 
 

Fig. 1. BBD with three variables 

2.2.	�Experimental set-up
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Table 1. 
Coding of independent variables and their corresponding 
values 

Levels Low Medium High 
Coding -1 0 1 
V 415 642.5 870 
F 1 2 3 
CP  1.5 3 4.5 
V: speed meseaured in m/min; F: feed rate measured in 
mm/rev; CP: cutting depth measured in mm 

 
Aluminium alloy 6061 workpieces, each with a size of 

30 mm in diameter and 100 mm in length, were used in this 
study. The cutting tool used is a tool holder section 25 x 25 
mm with carbide insert TiCN/TiN. 

The cutting test was performed after each run (cutting 
stroke) of 50 mm. To ensure accurate results, the same 
experiment was run multiple times. 

BBD of the experiment is one of the most commonly 
utilised RSM designs that focuses on optimising the 
response variable.  

In order to obtain the desired target, fifteen experiments 
were conducted at different levels of machining parameters 
as suggested by the box Behnken design of the experiment 
to collect the response (i.e. surface roughness) at different 
levels of machining parameters, i.e. at low, medium, and 
high levels. 

Table 2 presents the experiments done at different levels 
of cutting parameters during the experiment along with the 
experimental measured surface roughness. 

 
Table 2. 
Experiment conditions and results 
Experiment 

No. 
Cutting 
speed 

Feed 
rate 

Cutting 
depth 

(Exp.) 
Ra, nm 

1 415 1 3 380.2 
2 870 1 3 239.1 
3 415 3 3 668.8 
4 870 3 3 234.2 
5 415 2 1.5 451.3 
6 870 2 1.5 140.2 
7 415 2 4.5 598 
8 870 2 4.5 260.5 
9 642.5 1 1.5 288.4 

10 642.5 3 1.5 365.6 
11 642.5 1 4.5 269.8 
12 642.5 3 4.5 346 
13 642.5 2 3 336.7 
14 642.5 2 3 306.9 
15 642.5 2 3 291.4 

Ra: Surface roughness in nm 

3. Results and discussions 
 

The generated surface roughness’s first-order model 
equation was as shown in Equation No.10: 

 

𝑅𝑅𝑅𝑅 �  315.7 �  6.6 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 �  0.141 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �  38.5 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  (10) 
 

Tables 1 and 2 demonstrate the coding identifications of 
the independent variables and the experimental conditions, 
respectively. Each independent variable’s equation can be 
transformed and expressed as the following Equation No. 11: 

 

𝑥𝑥� � �����������������
���������������������

  

𝑥𝑥� � �����������������
���������������������

  (11) 

𝑥𝑥� � �������������������
�����������������������

  
 

Table 3 shows the predicted versus experimental results 
of the first-order model. Table 4 displays the analysis of the 
variance. The p-value for the first-order model’s lack of fit 
was 0.092, indicating that the model was adequate.  
 
Table 3. 
Comparison of experimental and predicted results according 
to the first-order model 

Run 
order 

Cutting 
speed 

Feed 
rate 

Cutting 
depth 

Measured 
Ra, nm 

Predicted 
Ra, nm 

1 415 1 3 380.2 443.504 
2 870 1 3 239.1 137.437 
3 415 3 3 668.8 552.824 
4 870 3 3 234.2 246.757 
5 415 2 1.5 451.3 469.573 
6 870 2 1.5 140.2 163.506 
7 415 2 4.5 598 526.756 
8 870 2 4.5 260.5 220.688 
9 642.5 1 1.5 288.4 261.879 
10 642.5 3 1.5 365.6 371.199 
11 642.5 1 4.5 269.8 319.062 
12 642.5 3 4.5 346 428.382 
13 642.5 2 3 336.7 345.131 
14 642.5 2 3 306.9 345.131 
15 642.5 2 3 291.4 345.131 

Ra: Surface roughness in nm 
 

By inspecting the analysis of variance (ANOVA) results 
for the first-order model, feed rates and cutting speed were 
identified to impact surface roughness significantly, i.e. both 
significantly explain the variance in surface roughness. In 
addition, cutting speed was the most contributing factor to 
the surface roughness, followed by feed rate.  

3.	�Results and discussions
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Table 4. 
First-order model’s analysis of variance 
Source DF Seq SS Contribution F-Value P-Value 
Model 3 217796 81.37% 16.02 0.000 
 Linear 3 217796 81.37% 16.02 0.000 
  Cutting 
speed 1 187355 70.00% 41.34 0.000 

  Feed rate 1 23902 8.93% 5.27 0.042 
  Cutting 
depth 1 6540 2.44% 1.44 0.255 

Error 11 49853 18.63%   
  Lack-of-Fit 9 48793 18.23% 10.24 0.092 
  Pure Error 2 1059 0.40%   
Total 14 267649 100.00%   
DF: Total degree of freedom, SS: Sums of squares, 
F: F-value, P: p-value 
 

Equation No. 10 was used to develop surface roughness 
contour plots at selected cutting depth values. It can be seen 
from Figure 2 (A) to (C) that to obtain the lowest surface 

roughness, a combination of high cutting speed, low feed 
rate, and low cutting depth should be used.  

Such contour plots potentially make it easier to predict 
surface roughness at any of the experimental zone points. 
Figure 2 (D) illustrates the normality of the residuals. In 
addition, from Figure 2 (A) to (C), the surface roughness 
reaches the highest value, i.e. more than 500 nm at low 
cutting speed, high cutting depth and feed rate; also, it can 
be seen that reasonable surface roughness values can also be 
obtained at mid cutting depth, low feed rate, and high cutting 
speed values. The contour plot facilitates the selection of 
surface roughness’s safety zone for any experiment. 

By postulating the second-order model, obtain the 
impact of the machine’s independent variables (i.e. 
machining parameters) and the response (i.e. surface 
roughness). According to the BBD method, the expression 
of the model’s equation is as the following Equation No. 12:  
 

�𝑟𝑟 � 1055 �  2.088 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �  7 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 �
 35.5 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑠𝑠𝑠𝑠𝑠𝑠𝐶𝐶𝑑 �  0.001101 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �  11.9 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟   𝑟𝑟𝑟𝑟𝐶𝐶𝑠𝑠 �
 2.7 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (12) 

 

  
 
Fig. 2. (A) Contour plot of surface roughness at low cutting depth; (B) Contour plot of surface roughness at moderate cutting 
depth; (C) Contour plot of surface roughness at high cutting depth; (D) Normal probability plot of model’s residuals 
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Table 5. 
Comparison of experimental and predicted results according 
to the second-order model 

Run 
order 

Cutting 
speed 

Feed 
rate 

Cutting 
depth 

Measured 
Ra, nm 

Predicted 
Ra, nm 

1 415 1 3 380.2 478.951 
2 870 1 3 239.1 172.884 
3 415 3 3 668.8 588.271 
4 870 3 3 234.2 282.204 
5 415 2 1.5 451.3 486.933 
6 870 2 1.5 140.2 180.865 
7 415 2 4.5 598 544.115 
8 870 2 4.5 260.5 238.047 
9 642.5 1 1.5 288.4 234.176 
10 642.5 3 1.5 365.6 343.496 
11 642.5 1 4.5 269.8 291.359 
12 642.5 3 4.5 346 400.679 
13 642.5 2 3 336.7 311.660 
14 642.5 2 3 306.9 311.660 
15 642.5 2 3 291.4 311.660 

Ra: Surface roughness in nm 
 

The data presented in Table 5 shows predicted results 
generated from the second-order model versus experimental 
values. ANOVA for the second-order model results shows 
that the second model’s lack of fit p value was 0.083, 
indicating that the model was adequate, as described in 
Table 6. 

By inspecting the second-order model’s ANOVA 
results, cutting speed was identified to be significantly 
associated with surface roughness; in other words, cutting 
speed explains the variance in surface roughness. In 
addition, cutting speed was the most contributing factor to 
the surface roughness, followed by feed rate.  

Equation No. 12 was utilised to develop surface 
roughness contour plots at the selected values of cutting 
depth. It can be seen from Figures 3 (A) to (C) that a 
combination of high speed, low feed rate, and low cutting 
depth should be used to obtain the lowest surface roughness. 
Such a contour plot potentially facilitates the prediction of 
the surface roughness at any point in the experimental zone. 
Figure 3 (D) illustrates the normality of the residuals.  

In addition, Figures 3 (A) to (C) indicates that the surface 
roughness reaches the highest value, i.e. more than 600 nm 
at the lowest cutting speed, highest cutting depth and feed 
rate, where the value of surface roughness at its reasonable 
value at low cutting depth, and feed rate values from 1-2 and 
high cutting speed values of more than 700. Figure 3 (B) 
shows low surface roughness values can also be obtained 
using moderate cutting depth, high cutting speed and low 
feed rate. The contour plot facilitates the selection of surface 

roughness’s safety zone for any experiment. In addition, 
when compared with the first-order model, the second-order 
model was more accurate as the root of the mean squared 
error of the second-order model was lower (49.7) versus 
(57.6) in the first-order model Table 7. Also, the r-squared 
value of the second-order model was (0.86), which is higher 
when compared with the first-order model (0.81), indicating 
that the second-order model was more efficient in explaining 
the variance in the surface roughness Table 7. 

Furthermore, by inspecting Figure 4, predicted surface 
roughness values by the second-order model are more 
consistent with the actual surface roughness compared with 
the first-order predicted values. Second-order models are 
often selected to yield more accurate predictions [26]. It is 
because the second-order model includes more explaining 
variables, i.e. the second-order model includes linear terms 
and a second-order term for each dependent variable. 
 
Table 6. 
Second-order model’s analysis of variance 
Source DF Seq SS Contribution F-Value P-Value 
Model 6 230458 86.10% 8.26 0.004 
 Linear 3 217796 81.37% 15.62 0.001 
  Cutting 
speed 1 187355 70.00% 40.30 0.000 

  Feed rate 1 23902 8.93% 5.14 0.053 
  Cutting 
depth 1 6540 2.44% 1.41 0.270 

Square 3 12662 4.73% 0.91 0.479 
  Cutting 
speed*Cutting 
speed 

1 11951 4.47% 2.58 0.147 

  Feed 
rate*Feed rate 1 571 0.21% 0.11 0.745 

  Cutting 
depth*Cutting 
depth 

1 140 0.05% 0.03 0.866 

Error 8 37191 13.90%   
 Lack-of-Fit 6 36131 13.50% 11.37 0.083 
 Pure Error 2 1059 0.40%   
Total 14 267649 100.00%   
DF: Total degree of freedom, SS: Sums of squares,  
F: F-value, P: p-value 
 
Table 7. 
Performance of first order RSM model compared with 
second order RSM model 

Parameter Linear RSM 
model 

Second-order 
RSM model 

RMSE 57.6 49.7 
R2 0.81 0.86 
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Fig. 3. (A) Contour plot of surface roughness at low cutting depth; (B) Contour plot of surface roughness at moderate cutting 
depth; (C) Contour plot of surface roughness at high cutting depth; (D) Normal probability plot of the residuals 

 
 

 
Fig. 4. Measured versus predicted surface roughness 
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4. Conclusions 
 

In the given study, reliable models for surface roughness 
prediction were developed and used to optimise the 
machining efficiency of Aluminium alloy 6061. The surface 
roughness equation clearly explains that the cutting speed 
and cutting feed rate are major contributors to the surface 
roughness. Low cutting speed, high cutting depth, and feed 
rate correspond to higher surface roughness. Surface 
roughness output contours were built in planes containing 
two of the variables (independent variables). The usage and 
further development of contours generated by RSM models 
will facilitate the selection of the ideal combination of speed, 
feed rate, and depth to optimise surface roughness. RSM is 
considered an efficient and convenient method, requiring 
little experimentation and giving highly crucial inputs and 
information. 
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